
學術論文｜ Academy Papers 1

金融風險管理季刊

民94，第一卷，第二期，1-15

＊ Correspondence: Mei-Yuan Chen, Dept. of Finance, National Chung Hsing University, Taichung 402, Taiwan. Tel: 886

4 22853323, Fax: 886 4 22856015, E-mail:mei_yuan@dragon.nchu.edu.tw. This research was partially supported by

National Science Council of Taiwan, grant NSC 89-2415-H-194.

Application of Quantile Regression to Estimation of
Value at Risk

Mei-Yuan Chen＊

Department of Finance

National Chung Hsing University, Taiwan

This paper compares performances of the 1 % and 5 % Nikkei 225 VaR calculations with the quantile

regression approach to those with the conventional variance-covariance approach and draws several

conclusions. First, VaR calculations with the quantile regression approach outperform those with the

variance-covariance approach. Second, advantages of the quantile regression approach are more obvious

in calculating VaRs for longer holding periods. Third, the quantile regression approach combined with t-

GARCH(1, 1) one-step-ahead volatility forecasts provides the best estimates for 1 % and 5 % VaRs of

Nikkei 225. Finally, calculations with the variance-covariance approach under distribution assumption are

not recommended for estimation of VaR for the log returns of Nikkei 225.

Keywords: VaR, quantile regression, volatility, GARCH

JEL Classification: C12, C22

Abstract

Jau-Er Chen
Department of Finance

National Taiwan University, Taiwan



金融風險管理｜季刊｜
Review of Financial Risk Management

2 94年6月 第一卷第二期

1. Introduction

Value at Risk (VaR) has been an

extensively used technique for measuring

market risk of a portfolio. VaR is simply an

estimate of a specific percentile for the

distribution of a certain portfolio’s market

value change over a given holding period. In

practice, Bankers Trust reports its daily 1%

VaRs and J.P. Morgan reports 5 % ones. More

comprehensive discussions are available in

Duffie and Pan (1997) and Jorion (1997).

Conventionally, the variance-covariance

approach with an assumption of conditional

“lognormal” returns is used to calculate a

portfolio’s VaRs. However, log returns are

frequently found not normally distributed, see

Boudoukh et al. (1997) and Hull and White

(1998). This motivates the employment of a

distribution-free approach to estimate the

distribution of returns. In literature, the quantile

regression approach suggested by Koenker and

Basset (1982) provides an estimation for a

specific quantile under a conditional

distribution. Engle and Manganelli (1999)

formulate VaRs based on a conditional

autoregressive Value at Risk model (CAViaR)

and estimate them through nonlinear quantile

regression. Taylor (1999) presents a procedure

to estimate a conditional quantile model which

is employed to calculate VaRs for a portfolio

over holding period k. This new method is

found comparable to conventional methods in

forecasting the 1 % VaRs for several foreign

exchange rates. To allow nonlinearity for the

forecasting model, Taylor (2000) applies the

quantile regression neural network method

introduced by White (1992) to estimation of

conditional quantiles.

In Taylor (1999, 2000), determination of

the quantile regression model is based on an

inspection of bootstrapped coefficient standard

errors and a pseudo R2 statistic. Since financial

data feature leptokurtosis, heavy tail and

autocorrelation, the conventional bootstrapping

methods are inappropriate for construction of

coefficient confidence intervals, see Chen and

Chen (2001). Based on the results of simulation

studies, Chen and Chen (2001) demonstrate

that rank-inverse test suggested by Koenker

and Machado (1999) is applicable for

regression models with GARCH (generalized

autoregressive conditional heteroskedasticity)

errors. The rank-inverse test therefore is

employed for detecting the significance of

coefficient in this paper. In addition to

Gaussian GARCH used by Taylor (1999,

2000), several other forecasts of volatility

including EWMA and t-GARCH methods, are

considered as well in the quantile regression

models.

The rest of this paper is organized as

follows. Section 2 outlines construction of the

forecasting model of VaRs for a portfolio.



學術論文｜ Academy Papers 3

Several other forecasts of multiperiod volatility

are also studied in section 2. Section 3 includes

basic introduction to the quantile regression

and construction of the distribution of

multiperiod log returns using quantile

regression approach. Comparisons among

various forecasting models for multiperiod

VaRs of Nikkei 225 are investigated in section

4. Conclusions and suggestions are presented

in section 5.

2. Variance-Covariance Approach for

Calculation of  VaR 

Formally, a VaR calculation aims at

making a statement that“We are (100- ) %

certain that we shall not lose more than V

dollars in the next k days”, where V is the VaR,

(100- ) % is the confidence level, and k is the

time horizon. Therefore, VaR is an estimate of

the th percentile of probability distribution of

the market value change for a portfolio.

Suppose the log returns of a portfolio for

holding period k at time t is denoted as γt,k=

ln(Pt+k)-ln(Pt) with a density function ƒ(γt,k),

where Pt is the market value of the portfolio at

time t. Given the density, the % value at risk

(Vt,k( )) of this portfolio for holding period k is

determined as

Apparently, value at risk is a certain

percentile of the distribution for k-period

returns. Therefore, knowledge about the

density function of the portfolio returns is

crucial for calculation of VaRs.

2.1 Calculation of VaRs under Normal

Distribution

Under assumption of normal distribution

for log returns, the th VaR of a portfolio for

holding period k can be calculated with the J.P.

Morgan RiskMetrics variance-covariance

approach as

where Z is the t h percentile of a

standard normal distribution andμt,k and σ2
t     ,    k

are mean and variance of γt,k, respectively. VaR

at time t is usually determined with the forecasts

ofμt,kand σt,k . In literature, μt,k = 0 is assumed

under the efficient market hypothesis. This

procedure has been discussed comprehensively by

Kroner et al.(1995) and Alexander and Leigh

(1997). As to the calculations of VaR under

normal distribution are discussed as follows.

2.1.1 Exponential Weighted Moving

Average (EWMA) Method

J.P. Morgan RiskMetricsTM uses EWMA

method to forecast one-step-ahead volatility log

returns. Denote historical one-period log

returns of a portfolio γt = ln(Pt)-ln(Pt-1).
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The m-period EWMA estimator for the

volatility of one-period log returns is defined as

where 0 <λ < 1 . The denominator

converges to                                      , an infinite

EWMA therefore can be written as

J.P. Morgan RiskMetricsTM sets m = 250

andλ= 0.94 in (1). Under the efficient market

hypothesis, μt,k = 0, the th VaR estimated

with the variance-covariance approach is

in which This method is

denoted as VaR.EWMA.

2.1.2 Gaussian GARCH(1,1) Method

Another popular method for predictingσt+1

is the GARCH(1,1) method. The one-period

log r e t u r n ,γt , f o l l o w i n g  a  G a u s s i a n

GARCH(1, 1) model is written as

where t-1 denotes the information up to

time t - 1. The one-step-ahead GARCH(1,1)

conditional variance is given by

And, the s-step-ahead forecast is given by

the recursive expression for s > 1,

The forecast of k-period GARCH(1,1)

conditional variance therefore is

Given the estimated parameters in the

GARCH model                                      the th

quantile of VaR is calculated as

where

et is the fitted residual. This method is

denoted as VaR.GARCH.

(4)

(5)

(1) 

(2) 

(3) 
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2.2 Calculation of VaRs under Non-

Gaussian Distribution

As Z is used, calculations of VaR

mentioned above are under normal assumption

on the one-period log returns. However, as is

well known that financial time series are not

normally distributed in reality, Z is

inappropriate to calculate VaRs. Two alternatives

are considered in this paper to obtain VaRs for

a portfolio not normally distributed.

2.2.1 t-GARCH(1,1) Method

To avoid imposing normal distribution

assumption, Bollerslev (1986) suggests the t-

GARCH models to formulate the conditional

heteroskedastic variances of γt. . That is,

where ν is a measure of platykurtosis, i .e . ,

“fatness”of the tails for the distribution of

and Beta(‧,‧) denotes a Beta function.

After the parameters in t-GARCH model

are estimated, the th

percentile of VaR is then calculated as

where

et is the fitted residual. This method is

denoted asVaR.tGARCH.

2.2.2 Calculation of VaRs without

Distribution Assumption

After the Taylor expansion on            i s

conducted, Taylor (1999) points out (4)

can be rewritten as

The distribution function of returns for a

portfolio over holding period k can be

constructed as

Under the efficient market hypothesis, μ = 0,

(8) becomes

As k1/2σ t+1 appears in (3) and k,kσ2
t+1

and σ2
t+1 appear in (4), they are candidates of

the terms in the function g(‧) in (7). Since

data may not be generated as a GARCH(1,1)

process, some other functions of k and σt+1 ,

(7)

(8)

(9)

(6)



say, kσt+1 and k2σ2
t+1 , can also be considered

in g(‧).

Under assumption of linearly functional

form for G(‧,‧), Taylor (1999) determines

the th VaR by estimating the following

quantile regression model:

To relax the linear assumption on G(σ2
t+1, k),

Taylor (2000) estimates conditional quantile

using quantile regression neural network

method introduced by White (1992)

instead.The linear function of G(σ2
t+1, k),

however, will be retained in this paper.

3. Estimation of VaRs with Quantile

Regressions

The linear1 quantile regression models

developed by Koenker and Bassett (1978) are

briefly introduced bellow. Suppose the

relationship between response variable t and

explanatory variable vector t (p×1 vector) at

th quantile is specified as

1 and               (1993) have proved the consistency and asymptotic normality of the nonlinear quantile regression

estimators. Afterwards, related applications and theoretical studies are also extensively discussed in literature, e.g. Koenker, et

al. (1997), Engle and Manganelli (1999) and Taylor (2000), etc. However, the discussions are confined to linear quantile

regression methods in this paper.
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It is ready to see

where i s the  dens i ty  funct ion  of Y

conditional on t. A quantile regression model

can be writen as

where t1 =1,and are errors with distribution

function F. immediately follows

the above definitions. In the light of fashion for

sample quantile estimators, the point estimators

of the linear quantile regression parameters

are obtained as

where ρ (‧)  is usually  called the“check

fucntion”.

(10)



Additionally,inder the q-dimensional linear

restriction that HO:β2 =0,denpte                

as the minimizer of the restricted criterion

function

Thereupon, we can define the goodness-of-fit

criterion which is analogous to R2 in least

squares regression as

R1( ) measures the relative success of the

quantile regression model at the quantile of

interest in terms of a weighted sum of absolute

residuals. Like R2, 0≤R1( )≤1.Unlike R2

measuring a global goodness of fit over the

whole conditional distribution, R1( ) measures

the local goodness of fit for a certain quantile.

R1( ) is therefore able to explore more

information at different portions of the

conditional distribution. In addition, R1( )

process can be used to construct test statistics

for joint hypotheses. Hence it will be employed

for model selection. In contrast to R1( )

derived from the results of primal solution, the

rank-inverse test originated from the rank test

學術論文｜ Academy Papers 7

The notoriously time-consuming computation

for quantile regression estimation has been

reduced considerably with the technique of

linear programming suggested by Koenker and

d’Orey (1987) and the modern high-speed

computer nowadays. In addition, an interior point

method for linear programming proposed by

Koenker and Park (1996) and Koenker et al.

(1997) has been shown comparable to least

squares in computation. With stochastic

equicontinuity, Fitzenberger (1997) derives the

asymptotic normality of quantile regression

estimators for models with strong mixing

variables. With the well established asymptotic

normality, conventional goodness-of-fit and

significance tests are readily applicable.

A linear programming problem can be

analyzed in two ways. The original problem is

conventionally called primal problem and the

associated problem dual. Based on the

estimations from the primal problem, Koenker

and Machado (1999) suggest a so-called pseudo-

R 2 criterion for model selection. Suppose the

linear quantile regression model is rewritten as

and denote    as the minimizer of the
unrestricted objective function

(11)
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of Gutenbrunner et al. (1993) and constructed

by Koenker and Machado (1999) is from the

results of dual solutions. As financial time

series feature leptokurtosis, heavy tail and

autocorrelation, the rank-inverse test is employed

to test the significance of each regression

coefficient because of its excellent performance

demonstrated by Chen and Chen (2001).

3.1 Rank-inverse Test in Linear Quantile

Regression Model

The duality of ranks and quantiles is well known in

statistics. Gutenbrunner and (1993)

showed that the solutions of dual problem for

linear program which is formulated for

computing regression quantiles generalize the

duality of ranks and quantiles to linear

regression models. The dual solution called

regression rank-score process establishes the

link between linear rank statistics and

regression quantiles. Integrating the regression

rank-scores with respect to an appropriate

signed measure on (0,1), one can use it to

construct tests2. The rank-inverse test is

constructed by integrating the score generating

function with respect to regression rank-scores.

The rank-inverse test designed for testing

quantile regression estimators circumvents the

difficult problem of estimating sparsity

function in time series. The testing procedures

for rank-inverse test are specified as follows.

Consider a linear model

and the null hypothesis                              is

undertaking given the significant level, α .

The regression rank-scores,      , Compute are

computed by solving                              

where     is a column vector of ones. For

the sake of computation, the -quantile score

function is considered

and

with

2  Gutenbrunner and                    (1993) discussed three broad classes of statistics which have various applications.
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and3

Formthe q-vector where         

is the vector with elements      4Under the

null and some suitable conditions, Koenker

and Machado (1999) show that

where

and then, the test statistic

Based on the results of simulation studies,

Chen and Chen (2001) demonstrate that rank-

inverse test suggested by Koenker and

Machado (1999) is applicable for regression

models with GARCH (generalized autoregressive

conditional heteroskedasticity) errors. The rank-

inverse test therefore is employed for detecting

the significance of coefficient in this paper.

3.2 Construction of Quantile Regression

Models for Estimation of VaR

In this paper, the empirical study aims

at a single asset, Nikkei 225 stock index.

There are 1000 observations of Nikkei 225

from 5/1/1996 till 5/19/2000 denoted as pt

obtained from Taiwan Economic Journal

Data  Bank.  The  k -per iod  ra tes  of  log

returns, rk,t, are computed with rk,t = ln(pt) -

ln(pt-k). Returns for holding periods of 1,

3, 5, 7, 10, 12 and 15 days are considered.

As  Duff ie  and  Pan  (1997)  repor t  the

holding period of two weeks has been

adopted by various organizat ions as  a

s tandard  for  VaR ca lcu la t ions ,  i t  i s

reasonable to stop estimation at a holding

period of 15 days. The variable of holding

(12)

4   Gutenbrunner and                 (1993) showed that the regression rank-score process,                     ,converges weakly to the

Brownian bridge in the uniform topology on C[0,1] provided that      is a suitably normalized triangular array of constants.

3

Similarly,
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period is defined as follows.

where is a 1000 × 1 vector with each

element of 1. In addition, the multiperiod

return variable is denoted as

whereγk is a 1000 × 1 column vector with

elementsγk ,t . For each γk , either ARMAGARCH

or ARMA-t GARCH model has been fitted and no

ARMA coefficient is found significant. The

efficient market hypothesis therefore is not

rejected.

The volatility variable is denoted as

where      is a 1000×1 vector containing

one-step-ahead volatility forecasts, which

are estimated with either Gaussian or t-

GARCH(1, 1) model usingγ1. forecasted

with estimated GARCH(1, 1) model is as

follows

where et = rt + 0.0025. And    forecasted

with estimated t-GARCH(1, 1) model is as

follows

where et =γt+ 0.0035 and = 7.3923.

In this paper, the linear quantile regression

models of (10) are constructed with dependent

variable γand explanatory variables including

where denotes the Hadamard product(direct

product)5 and 1 is defined as

The rank-inverse test  is  employed for

de tec t ing  the  s ign i f icance  of  each

coeff ic ien t  and  the  goodness-of - f i t

measure  R 1(   )  for  eva lua t ing  these

quantile regression models. Based on these

criteria, estimation of the selected quantile

regression model is

5 The Hadamard product or direct product of A and B is the matrix

(13)

(14)
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for = 1 and

for = 5, respectively. The asterisk indicates

the rank-inverse test statistic is significant at 5 %.

Here the forecasts of       are estimated with

the Gaussin GARCH(1,1) model. This method

is denoted as VaR.QR.GARCH. The forecasts

of    are estimated with t-GARCH(1, 1) as well

and the estimation of selected quantile regression

model is

for = 1 and

for = 5, respectively. This method is

denoted as VaR.QR.tGARCH. To complete

the  compar isons ,       es t imated  wi th

EWMA is also considered in constructing

quantile regression models. The estimation

of selected quantile regression model is

for = 1 and

for = 5,  respectively.  This method is

denoted as VaR.QR.EWMA.

4. Comparisons among Different

VaR Estimations

In the previous sections, three calculations,

VaR.EWMA, VaR.GARCH, and VaR.tGARCH,

with the variance-covariance approach and another

three, VaR.QR.EWMA, VaR.QR.GARCH, and

VaR.QR.tGARCH, with the quantile regression

approach are illustrated . Empirical comparisons

among these six calculations for Nikkei 225

will be conducted in this section.

As the quanti le  est imates are with

forecasted volatilities, their unobservable

nature prevents the employment of MSE

criterion for comparisons among various

VaR estimations. The back-testing criterion

instead is used to evaluate performances of

these VaR estimations. The most popular

back- tes t ing  measure  for  accuracy  of

quantile estimator is the percentage of

(15)

(17)

(16)

(18)

(19)

(20)



金融風險管理｜季刊｜
Review of Financial Risk Management

12 94年6月 第一卷第二期

returns   falling  below the   quantile

estimate     denoted as    . For an accurate

estimator of   th quantile,    will be very

close to %. This criterion has been used

by Granger et al. (1989), Alexander and

Leigh (1997), and Taylor (1999, 2000) etc.

To determine the significance of departure

for   from %, the following test statistic

is considered:

where T is the sample size. Performances

on forecasting multiperiod 1 % and 5 % VaRs

for Nikkei 225 among the six calculations are

reported in Table 1 and Table 2, respectively.

The boldfaced figure in each column signifies

the closest estimate for a given holding period.

The asterisked figures indicate rejection of the

equality between    and .

For the 1 % VaR, five out of seven boldfaced

figures and few asterisked figures are observed in the

bottom part of Table 1, which indicates calculations

with the quantile regression approach have better

performance in accuracy than those with the

variance covariance approach do. Among the three

calculations with the quantile regression approach,

VaR.QR.tGARCH and VaR.QR.GACH have the

best and the worst performances, respectively.

The former has the most boldfaced figures and

no asterisked figure at all, yet the latter has no

boldfaced figure and one asterisked figure.

Although there are two boldfaced figures

present in the top part of Table 1, the

performances for calculations with the

variance-covariance approach deteriorate as the

holding period extends, typically for VaR.GARCH

and VaR.tGARCH. These results show

calculations with the variance-covariance

approach under distribution assumptions

perform worst. To summarize, calculations

with the quantile regression approach

outperform those with the variance-covariance

approach, in particular for longer holding

periods. Moreover, t-GARCH one-step-ahead

volatility forecasts combined with quantile

regression approach is recommended for

calculation of the 1 % VaR for Nikkei 225.

As to the 5 % VaR, calculations with the

quantile regression approach again are superior

to those with the variance-covariance approach.

Although the number of boldfaced figure drops

to four, the number of asterisked figure remains two.

VaR.QR.GARCH has two boldfaced figures yet two

asterisked figures are present. Neither

VaR.QR.tGARCH nor VaR. QR. EWMA has a

single asterisked figure, which suggests their

performances are better than VaR. QR. GARCH’s.

For calculations with the variance-covariance

approach, VaR.EWMA has three boldfaced

figures, however, one asterisked figure is found

with it. VaR.GARCH and VaR.tGARCH

perform worst as all figures are asterisked for

holding periods longer than 3 days and not a
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single boldfaced figure is found. To

summarize, calculations with the quantile

regression approach outperform those with the

variance covariance approach, in particular for

longer holding periods. Besides, t-GARCH and

EWMA one-step-ahead volatility forecasts

combined with quantile regression approach

are recommended for calculation of the 5 %

VaR for Nikkei 225.

Results from Table 1 and 2 confirm the

quantile regression approach is a useful tool for

calculation of VaRs. Its advantage is obvious

for both 1 % and 5 % VaRs, especially where

holding periods are longer. As to the effect of

forecasts for one-step-ahead volatility, the

calculation with quantile regression approach

combined with t-GARCH(1,1) estimate is

recommended for calculation of VaRs for

Nikkei 225. Nevertheless, the conventional

calculations with the variance-covariance

approach under either normal or t- distribution

are not recommended.

5. Concluding Remarks

Comparisons in accuracy of 1 % and 5 %

VaR calculations for Nikkei 225 (5/1/1996 –

5/19/2000) are investigated in this paper. In

particular, comparisons between calculations

with the quantile regression approach and those

with the variance-covariance approach either

with or without distribution assumption are

Table 1 Performances for Various Calculations of 1 % VaR

Note: * Significant at 5 % level. Boldfaced figures mark the closest estimation for VaR estimation

for a given holding period.
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