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1 The Internal-Ratings Based approaches for credit risk and the Advanced Measurement Approaches (AMA) for operational risk will be
implemented at the end of 2007.
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I. Introduction

In preparing for the formal

implementation of the New Basel Capital

Accord (Basel II) at the end of 20061, our

banking sector has been studying relevant

provisions and response strategies. In the hope

to promote and keep our banking supervision

and risk management at the international level,

the Bureau of Monetary Affairs under the

Financial Supervisory Commission (formerly

the Bureau of Monetary Affairs under the

Ministry of Finance) in particular has set up a

New Basel Capital Accord Joint Research

Taskforce with Bankers Association to study

relevant regulatory and implemental issues.

The banking sector is paying particular

attention to the internal-ratings based (IRB)

approaches for credit risk provided in Basel II.

Especially, model validation has been the

focus among practitioners, which palys an

important role in IRB qualitification by

supervisor. As an introductory effort, this

paper tackles the subject of credit rating model

validation. In reference to current theories and

practices on the subject, we examine the

considerations for model validation and

introduce currently adopted approaches.

However, readers should keep in mind that

this paper only discusses quantitative

approaches. New theories and approaches for

qualitative validation will be discussed at a

later date as this field of study develops. If a

bank realizes the whole picture about model

validation, it will facilitate the work of IRB

model construction and strategic planning for

its business operation. More so, if the rating

system is accepted by the regulatory authority,

it will certainly boost the bank's stature and

market competitiveness.

Below is an introduction to the minimum

operational requirements for the validation of

IRB model outputs suggested in the draft of

Basel II, complemented with actual case

study. Hopefully it will provide some value to
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banks that intend to adopt the IRB approach.   

II. Validation Framework

The primary purpose of validation is to

examine whether the internally constructed

scoring model can fully explain the credit

status of borrowers. As sampled data used to

construct the model can mostly be explained

by the model, it is necessary to see whether

the model possesses sufficient explanatory

power for different samples. Thus out-sample

testing should be carried out to observe the

tendency of over-learning, which will lower

the predictability of model. In addition,

improper sampling and omission of relevant

information will lead to model bias. Thus

external data should be employed to assess the

validity of the rating model. Moreover, since

the primary objective of the rating model is to

make forecast, whether the model works

normally under all circumstances, including

significant changes of the macroeconomic

environment, must also be validated. Below is

an introduction to the framework of model

validation. 

A. Backtesting

Backtesting entails the use of out-samples,

including samples of different periods not

used in model construction, samples of the

same periods not used in model

construction, as well as samples of different

periods used in model construction, to

examine the out-sample predictability of

model. 

B. Benchmarking 

Benchmarking is to compare the results of

rating individual borrower or facility using

internal models with the outputs of external

mechanisms, analyzing the origin of

disparity and deciding whether such

disparity is reasonable. The benchmark

could be market information (spread), or

the assessment of third parties (e.g. external

rating agency or external models) or

internal model (other rating systems).

Differing from backtesting which stresses

discerning the discrepancy between

prediction and actual outcome,

benchmarking stresses the dissimilarities

between different predictors. 

C. Calibration

If the model only takes account of allover

efficacy, it would hide the part of poor

predictability. Thus, it has to review the

allover and each departmental efficacy.

Calibration will advance the predictability

of model by inspecting the deviations in all

situations and adjusting them. To compare

and determine that the estimates of risk

components for each grade of internal

rating are within reasonable range, banks

can use historical data, the assessment of

external rating agencies and external model

outputs or the outputs of other internal

rating systems. The comparison basis can

be measures of risk components, expected

losses or unexpected losses. The

comparison can be made over one grade,

multiple grades or the all asset portfolio to

observe if there is any material discrepancy.

Differing from benchmarking which

observes whether the rating results are

consistent, calibration targets risk weights

in the same grade to see if they are

consistent.  
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D. Stress test

Stress test entails simulating adverse

economic conditions or expected events by

means of trial calculation or scenario

analysis to observe possible resulting

changes and losses. 

III. Validation Methods

The validity of a rating model is judged

from three dimensions: 1. discriminative

power: the accuracy of the model in

differentiating non-defaulters and defaulters;

2. homogeneous: does the model provide

enough rating grades to classify borrowers

with different credit characteristics, while the

credit characteristics of all borrowers in the

same grade are homogenous; 3. stability: a

good rating model must take into account the

influence of external economic factors that the

model outputs reflect the credit status of

individual borrowers and represent long-term

trends without being affected by short-term

volatility. The validation methods for different

dimensions of a rating model are discussed

below.

A. Analysis of discriminative power

To validate whether a credit rating model

has adequate discriminative power and to

examine whether its error is within a

reasonably acceptable range, the following

methods (but not limited to those methods)

are recommended:

1. Kolmogorov-Smironov Test (K-S test)

The credit rating model has to discriminate

the difference between non-defaulters and

defaulters. Therefore, adoption of K-S test

would validate whether the distribution of

rating score of non-defaulters differ with

the distribution of rating score of defaulters

and understand whether the credit rating

model discriminate the difference between

non-defaulters and defaulters. 

The theoretical basis of K-S test is

discussed below:

When the difference in the cumulative

relative frequency distribution between two

samples of data is very small and such

difference is random, the population

distribution of the two samples should be

consistent; conversely, when the

distribution of two populations is not

consistent, the difference in the cumulative

relative frequency distribution of the two

samples will be significant, as can be seen

in Figure 1.

Figure 1: The cumulative probability
distribution of non-defaulters
and defaulters 

(1) Calculate the cumulative probability of

non-defaulter and defaulters in each

stage of rating score.

(2) Calculate the difference in the

cumulative probability between two

groups in each stage.

probability

the cumulative probability
of non-defaulters

the cumulative probability
of defaulters

K-S value

Rating score
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(3) Find the maximum difference in the

cumulative probability (K-S value).

After a credit rating model has been

constructed, we can use K-S test to examine

whether the ratings of non-defaulters and

defaulters are uniformly distributed; the

greater the K-S value, the more it proves

that the rating scores of non-defaulters and

defaulters are not uniformly distributed, the

better the scoring model is in discriminating

the difference between non-defaulters and

defaulters. 

2. Gini Coefficient

The rating of non-defaulters and defaulters

would be different. Gini coefficient is

essentially a variance used to quantify the

difference between data points. In Figure 2,

when the model would not discriminate the

difference of non-defaulters and defaulters.

Thus non-defaulters and defaulters will

have the same distribution, 

Figure2: The rating of non-defaulters and
defaulters

In Figure 3, the x axis is the ratio of the

borrowers to all borrowers below K; the y

axis is the ratio of defaulters to all

defaulters below K. Lorenz curve is the

segment of each point under each rating.

The Lorenz curve will overlap with the 45

degree line in the chart as the model would

not discriminate the difference of non-

defaulters and defaulters. Thus the area

between the Lorenz curve and 45 degree

line is the measure of difference in the

distribution of non-defaulters and

defaulters. Gini coefficient is the quotient

of this area divided by the entire area below

45 degree line as expressed by:gini=

=        = 2A.  That is, Gini coefficient is

twice the area enclosed by the Lorenz curve

and 45 degree line. 

non-defaulters

defaulters

Rating

T
he num

ber of borrow
ers

R
atio of cum

ulative
defaulters in grade K

Ratio of cumulative
borrowers in grade K

A
A+B

A
0.5

Gini coefficient can be expressed by a

mathematical equation:

(1)

G Gini coefficient

X Cumulative percentage of borrowers

Y Cumulative percentage of defaulters

K Rating

Figure3: Lorenz curve



curve (area under curve or AUC), the more

accurate the rating model. AUC can be

interpreted as the average ability of the

rating model to accurately classify non-

defaulters and defaulters. When AUC is

0.5, it means non-defaulters and defaulters

are randomly classified; when AUC is 1, it

means the scoring model accurately

classifies non-defaulters and defaulters.

Thus in reality, the AUC ranges between

0.5 and 1 (AUC under 0.5 has no meaning).

We can use an unbiased estimator Û to

denote AUC:

(2)

where

ND is the total number of defaulters;

NNDis total number of non-defaulters

SD is the rating score of defaulters;

SND is the rating score of non-defaulters.

JCIC JCIC  Column 5

Gini coefficient ranges between 0 and 1;

when it is equal to 1, it means the model

outputs result in unequal distribution of

non-defaulters and defaulters, thereby is

fully able to differentiate defaulters and

defaulters; when it is equal to 0, the rating

model cannot create unequal distribution of

the two groups, hence totally unable to

differentiate between defaulters and

defaulters.

3. Receiver Operating Characteristic (ROC)

Let C is the cut point. When a bank

classifies non-defaulters and potential

defaulters based on the rating results, it is

bound to incur Type error (creditworthy

borrower is classified as a potential

defaulter) and Type error (defaulting

borrower is classified as a non-defaulter), as

derived in Table 1.

Table1: The decision under the critical
value

Cut point C Defaulters
Non-

defaulters

Rating Above critical Correct Type error

score value prediction 

Below critical Type error Correct

value prediction

ROC curve is plotted based on Type error

rate (false alarm rate) and 1 minus Type

error rate (hit rate) under all possible

decisions made by the decision-maker as

shown in Figure 3:

The more the ROC curve bends towards (0,

1), the better the rating model is able to

distinguish non-defaulters and defaulters. In

other words, the bigger area under the ROC

1-T
ype 

error rate

Type error rate

Figure4: ROC curve
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4. Cumulative Accuracy Profile (CAP)

A credit rating model would assign the

lowest credit scores to the default .Consider

a rating model which assigns to each debtor

a scores s out of k possible value

s{S1,............, Sk} with S1<............<Sk .A

high rating score indicates a low default

probability. By the scoring results, the

cumulative percentage of all defaulters

should be equal to the cumulative

percentage of all borrowers multiplied by

default rate. But in reality, such is

oftentimes not the case. The discrepancy

comes from the model error in interpreting

non-defaulting and defaulting borrowers.

The Cumulative Accuracy Profile curve is

defined as the graph of all points

(C D I
TC D i

D)i=0,....,k where the points are

connected by straight lines as shown in

Figure 4.2

In the best situation, the CAP curve would

be a straight line with gradient of (1/default

rate) and staying at 1. Conversely, the CAP

curve of a model without any

discriminative power would be a straight

45˚ line. In reality, the CAP curve of a

rating model would run between the two.

The quantification of CAP curve is termed

accuracy rate , which is defined as the

ratio of AR (area between the CAP curve of

scoring model and 45˚ line) and Ap (area

between 45˚ line and the CAP curve of

perfect model):

(3)

AR lies between 1 and 0;3 the closer it is to

1, the more accurate is the scoring model;

conversely, the closer it is to 0, the less

accurate is the model.

Generally we can use an unbiased estimator

V̂ to denote AR:

(4)

where ND is total number of defaulters; NND

is total number of non-defaulters; SD is the

credit score of defaulters; SND is the credit

score of non-defaulters.

2 We define the cumulative probabilities as CDi
T and CDi

D that denote the distribution function of the i score value of the total sample of
debtors and defaulters. 

3 When each data points can be further divided, Gini coefficient is equal to accuracy rate (AR).

Figure5: CAP curve

Ratio of cumulative
borrowers in cut point C

R
atio of cum

ulative
defaulters in cut point C
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B. Homogenous

Assuming the credit risk model would

discriminate correctly the difference of non-

defaulters and defaulters, it should

discriminate the borrowers have different

creditworthy. The great grade

discrimination would put the borrowers

have the same creditworthy in the same

grade. In other words, the difference of

default factor of borrowers in the same

grade is similar. Thus, the great grade

discrimination would make difference be

the smallest. Assuming K borrowers in the

same rating grade have the same

Probability of Default (PD), all defaults

within the grade are binomially distribution,

that the defaults per rating grade are

statistic independent. In other words, all

borrowers within the same rating grade

must be homogenous. If not, it means

default events are not independent of each

other and the estimation of default rate for

this rating grade is not accurate. Thus it is

necessary to use binomial test to verify

whether all borrowers within the same

grade are statistically independent, the

following methods (but not limited to those

methods) are recommended:

1. Binomial test

When the number of default events (DK) in

a rating grade containing K borrowers

exceeds a critical value dk,a , we can reject

the hypothesis that the actual PD will be

smaller than or equal to the estimated PD at

a confidence level ; in other words, no

sufficient evidence shows that PD is

underestimated. The dk,a is calculated as

follows:

(5)

In light that binomial test ignores the effects

of economic fluctuation and asset

correlation, it generally underestimates. dk,a

In the calibration of PD, binomial test

provides a conservative indicator. 

2. Granularity adjustment

Given that binomial test omits the influence

of asset correlation, resulting in

underestimation of critical value dk,a , we

attempt to add in this factor to relax the

constraint of  dk,a .

According to the hypothesis of one factor

model of Gordy (2002): defaults are

influenced by systematic and idiosyncratic

factors. The idiosyncratic factors are mutual

independent. All borrowers are influenced

by the same systematic factors. The

influences of systematic factors are the

correlation ( ) of assets. Therefore, critical

value dk,a may be simplified as: 4

(6)

4 As derived in appendix A1
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3. Moment matching

Granularity Adjustment assume probability

of default following Normal-distribution,

thus critical value dk,a may be simplified as

(6). According to the hypothesis of

Overbeck and Wanger (2000): using

Moment Matching, probability of default

follows Beta-distribution. Therefore,

critical value dk,a may be simplified as:5

(7)

Where Z is random variable and the

probability density function of Beta-

distribution is given by

(8)

Then, we use the data of the Joint Credit

Information Center (JCIC) to validate the

homogeneous in the same grade. When the

true defaulters exceed the critical value, the

results show that the borrowers reject the

hypothesis of homogeneous. In Table 2, the

homogeneous of out-sample is validated.

Percent is the ratio of borrowers in each

grade to total sample. PD is the estimated

default rate in each grade. No. of borrower

is the number of borrowers in each grade.

Binomial is the tolerance of defaulters in

each grade by Binomial Test. Granularity is

the tolerance of defaulters in each grade by

Granularity Adjustment. Moment is the

tolerance of defaulters at each grade by

Moment Matching. Default is true

defaulters in each grade. DR is the true

default rate in each grade.  

5 As derived in appendix A2

Table 2: Validation of Grade Homogeneity

Rating Percent PD No. of Binomial Granularity Moment Default DR

1 1.59% 0.00% 1651 1 1 1 1 0.06%

2 2.99% 0.93% 3103 47 423 329 7 0.23%

3 3.46% 2.26% 3601 110 724 609 17 0.55%

4 10.46% 2.54% 10869 328 2286 1938 74 0.68%

5 14.78% 3.03% 15362 532 3479 2992 144 0.94%

6 23.32% 4.80% 24235 1267 6761 6025 388 1.60%

7 17.81% 8.25% 18513 1644 6865 6339 484 2.61%

8 16.39% 17.98% 17036 3219 9635 9278 840 4.93%

9 9.20% 40.20% 9566 3994 7749 7710 1155 12.07%

borrower
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4. CIER (condition information entropy ratio)

Assuming all rating grades output by a

credit rating system correspond to a PD

value and assuming this system can output

n rating grades R= R1, ,Rn , the

conditional information entropy can be

expressed as follows:

(9)

where

P(D|Rk) is the probability of default among

borrowers in rating grade Rk .

P(D|Rk) is the probability of non-default

among borrowers in rating grade Rk .

A good credit rating system can

differentiate borrowers having different

credit quality and assign corresponding

grades. In practice, Conditional Information

Entropy Ratio (CIER) as defined below is

used to evaluate the quality of grades

assigned by a rating system to borrowers of

different credit conditions. 

(10)

Assume default events obey binomial

distribution, then

(11)

P denotes the PD of all borrowers.

A perfect credit rating system is able to

classify potential defaulters in one grade

and non-defaulters in other grades. In such

event, CIER is equal to 1, for the system

totally predicts the uncertainty of default

information. For a rating system that does

not have any discriminative power, the

distribution of potential defaulters in each

grade will be identical to that of the

population, meaning the system cannot

provide additional information and its CIER

is 0.

In Table 3, the results would be validated

by CIER. The data based on the JCIC and

Sobehart Keenan &Stein (2001).

Table 3: Validation of Grade Distribution

ROA 0.06

Reduced Z-score 0.09

Z-score 0.06

Hazard Model 0.11

Merton Model Variant 0.14

Mood's model 0.19

JCIC 0.1

C. Stability analysis

Stability analysis pertains to observing

whether the model results show the short-

run and long-run trends of drastic change,

and further, analyzing the impact of short-

term economic fluctuation on the basis of

long-term rating, variation of grades

resulting from change of rating method,

whether grade changes comply with basic

model assumptions or a manifestation of

model deficiency, and thereby analyzing

whether the change of transition matrix is

within reasonable range. 



Review of Financial Risk Management

10 94 3

1. The establishment of transition matrices

Analyzing the stability of model have to

know the change of each rating, and future,

understanding whether the range of rating

change are reasonable. These results would

be analyzed whether the model results show

the short-run and long-run trends of drastic

change. Thus, the transition probability of

each grade will influence the analysis of

stability of model. the following methods

(but not limited to those methods) are

recommended:

a. Cohort approach

Let Pi,j(∆t ) be the probability of migrating

from grade i to j over horizon ∆ t. E.g. for

∆ t=1 year, there are ni borrowers in rating

category i at the beginning of the year, and

ni,j migrated to grade j by year-end. Then,

an estimate of the transition probability. 

. In general, using this 

approach, the borrowers whose rating were

withdrawn or migrated to not rated status

are removed form the sample.     

b. Duration approach

For a time homogeneous Markov chain, the

transition probability matrix is a function of

the distance between dates. The estimates

of the elements of the intensity matrix is

given by 

(12)

where Yi(s) is the number of borrowers

with rating i at time S, and ni,j(T) is the

total number of transitions over the period

form i to j. Moreover, the Markov transition

probability matrix with time homogeneous

would be obtained by exponential of

intensity matrix.

For example, transition matrix is

established in Table 4.6

6 S&P's average one year transition rates, adjusted for the not rated category, date based on Cynthia & Ron (2000).

Table 4: Transition matrix

End

Start
AAA AA A BBB BB B CCC default

AAA 91.93% 7.46% 0.48% 0.08% 0.04% 0.00% 0.00% 0.00%

AA 0.64% 91.81% 6.76% 0.60% 0.06% 0.12% 0.03% 0.00%

A 0.07% 2.27% 91.38% 5.12% 0.56% 0.25% 0.01% 0.04%

BBB 0.04% 0.27% 5.56% 87.87% 4.83% 1.02% 0.17% 0.24%

BB 0.04% 0.10% 0.61% 7.75% 81.48% 7.90% 1.11% 1.01%

B 0.00% 0.10% 0.28% 0.46% 6.95% 82.80% 3.96% 5.45%

CCC 0.19% 0.00% 0.37% 0.75% 2.43% 12.13% 60.44% 23.69%
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2. Analyzing the reasonableness of transition

matrix change (grade maintenance rate, rate

of upgrade/downgrade, etc.)

According to the approaches of

establishment of transition matrix, we

obtain a long-term credit transition matrix.

Then, each grade change of transition

matrix, especially drastic change pertains to

analyzing whether the probability of grade

change is decreasing with more drastic

change and reasonable.

3. Analyzing the reasonableness of grade

reinstatement (grade reinstatement rate, etc.)

The prediction of three year credit risk

model would be reviewed to comparing

whether the results is change in the same

way. The prediction in different way is

called reverse rating. Let nij,jk be the number

of borrowers with migrating from grade i to

j and to k (i>j and j<k or i<j and j>k) and

ni be the total borrowers that initial grade is

i. Reverse rating is given by

(13)

The range of grade change would be

modified by different situation. However, as

the rage of grade change larger, the reverse

rating would be smaller.

4. Does cumulative PD vary monotonically with

time and grade?

The cumulative default probability each

year would be reviewed to analyzing

whether the cumulative default probability

is increasing with time and decreasing with

downgrade.

5. Singular value decomposition (SVD) of

mobility

Stability analysis must take account of the

time homogenous of transition matrix to

analyzing whether the model results the

impact of short-term economic fluctuation

on the basis of long-term rating. First, the

identity matrix I is defined as homogenous

matrix. This matrix means the rating of said

borrower does not change with time. An

actual matrix P with a distance from the

homogenous matrix is defined as a mobile

matrix 
~
P :  

~
P=P-I (14)

Y.Jafry and T.Schuermann (2004) propose a

metric defined as the average singular value

of a mobile matrix Msvd ,described as

follows, with the notion of mobility matrix

and adoption of singular value

decomposition.7

(15)

where i denotes the ith eigenvalue. 

For example, we obtain SVD value is

0.1563 by using the Table 4 that is S&P's

average one year transition rates, adjusted

for the not rated category.

7 As derived in appendix A3
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IV. Conclusion

Credit rating model validation covers

extensive dimensions, each one of them is

hard pressed to take into account all situations.

Hence a mix of validation approaches should

be more appropriate. Also as statistical figures

cannot set a so-called reasonable range,

benchmarking using external information and

even different models but identical samples

should be employed to examine the soundness

of internal models. In model construction,

sometimes it is difficult to match all measures

at the same time (e.g. the model results have

optimum discriminative power, stability and

grade distribution at the same time). Thus

banks should identify the primary objective of

constructing an internal model and prioritize

all the dimensions to make sure their internal

model achieves the intended results.  

Appendix A1

Using the one factor model of Gordy 

(2002), let                      depict a 

default event, then the total number of

default is DK

Define the defaults per rating grade are

binomially distribution

E[Dk]=kp

Assume Probability of Default (PD)

observes normal distribution, we can derive

t= -1(p)

Let critical value  dk,a be

dk,a=min d:P [Dk ≥ d ]≤1-

then q( ,Dk) , the quantile of DK is

q( ,Dk)=min x:P[Dk ≤ x] ≥

Therefore, critical value d k,a  may be

simplified as

dk,a =q( ,Dk)+1

Because                 , the quantile of RK and 

DK are related by 

Use Taylor expansion to carry out second-

order expansion of quantile of RK at R

when K approximates infinity,

The quantile of R, q( ,R ) is

After obtaining q( ,R ) ,we can simplify

the quantile of DK, q( ,R ) as
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Subsequently, critical value dk,a that takes

into account asset correlation can be

derived.

Appendix A 2

Assuming PD follows beta-distribution, the

quantile of DK, q( ,Dk )may be rewritten

as

The density of a B(a,b)-distributed random

variable Z is defined by 

Its parameters a and b are respectively

where  

Using Taylor expansion, we can derive

The expectation and variance respectively

of Z are given by 

Then we can obtain the quantile of Z

(q( ,R )), and critical value dk,a is

Appendix A 3

We can use this approach to find

continuously mobile matrix according to

the steps below:

Assuming A is a m-by-n multiple matrix,

and in matrix A*A, A* is a transition of A,

take the complex conjugate of each

element, i.e. A*ij  = Aj i. If A*=A, A is

termed a hermitian matrix with

eigenvalue being a real number. Apparently

A*A is also hermitian. So its eigenvalue is

a real number and non-negative. 

The singular value decomposition of a m-
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by-n matrix A is to break A into A= USV*,

where U is m-by-m, V is a n-by-n unitary

matrix, S is a m-by-n non-standard

diagonal matrix , Sij = 0, i j  Sii = i ,

i is a nonnegative real number. We call

i the singular value of A, which is the

square root of eigenvalue of A*A matrix. 

Furthermore, S= diag ( 1 , 2 , ... , s ),

s= min(m,n), and 1 ≥ 2 ≥ ... ≥ s  ≥0.

The feature vectors of A*A constitute V, the

feature vectors of AA* constitute U, then:

AV = US, i.e. Avi= iui , 1 ≤ i ≤min(m,n),

ui and vi are respectively the column vector

of U and V, and A*A= VS*U*USV* =

V(S*S)V*, or S*S = V*(A*A)V, S*S=D is

a n-by-n diagonal matrix, where main

diagonal elements are i2 , i=1,2 ,..., s,

while the rest are zero. Similarly AA*=

USV*VS*U*= U(SS*)U*, or SS* =

U*(A*A)U, SS* = D' is a m-by-m diagonal

matrix, where the main diagonal elements

are i2 , i=1,2 ,..., s, while the rest are

zero.

A 3-D credit migration matrix is cited as an

example to describe the use of SVD: 

Assuming a credit migration matrix as

follows:

P =

then  
~
P and  

~
P

~
P are respectively:

~
P = 

and

The eigenvalue of P´P is:

So the norm of 
~
P , i.e. the square root of the

largest eigenvalue of P´P is:

The presence of a specific matrix that let

Xmax = 

If p1=p2=p3=0.1, then x'max=(-0.01 0.02

1)

The SVD of this matrix is equal to
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